Electrically silent divalent cation entries in resting and active voltage-controlled muscle fibers.

نویسندگان

  • Céline Berbey
  • Bruno Allard
چکیده

Ca2+ is known to enter skeletal muscle at rest and during activity. Except for the well-characterized Ca2+ entry through L-type channels, pathways involved in these Ca2+ entries remain elusive in adult muscle. This study investigates Ca2+ influx at rest and during activity using the method of Mn2+ quenching of fura-2 fluorescence on voltage-controlled adult skeletal muscle cells. Resting rate of Mn2+ influx depended on external [Mn2+] and membrane potential. At -80 mV, replacement of Mg2+ by Mn2+ gave rise to an outward current associated with an increase in cell input resistance. Calibration of fura-2 response indicated that Mn2+ influx was too small to be resolved as a macroscopic current. Partial depletion of the sarcoplasmic reticulum induced by a train of action potentials in the presence of cyclopiazonic acid led to a slight increase in resting Mn2+ influx but no change in cell input resistance and membrane potential. Trains of action potentials considerably increased Mn2+ entry through an electrically silent pathway independent of L-type channels, which provided 24% of the global Mn2+ influx at +30 mV under voltage-clamp conditions. Within this context, the nature and the physiological role of the Ca2+ pathways involved during muscle excitation still remain open questions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

فعالیت فیبرهای گاما در وضعیت استراحت و هنگام کشش های فازیک و تونیک در دوک عضلانی دم Rat

Background and Purpose: Basically, The muscle spindle is innervated by γ – fibers, γ – fibers are divided into phasic and tonic groups on the basis of their function. Ït is believed that phasic one γ innervate all the muscle spindle fibers where as tonic one innervate only tonic muscle spindle fibers and phasic of type two. The purpose of this study was to observe the fiber activity during ph...

متن کامل

Mechanisms of Anion and Cation Permeations in the Resting Membrane of a Barnacle Muscle Fiber

The resting membrane of a barnacle muscle fiber is mostly permeable to cations in a solution of pH 7.7 whereas it becomes primarily permeable to anions if the pH is below 4.0. Mechanisms of ion permeation for various monovalent cations and anions were investigated at pH 7.7 and 3.9, respectively. Permeability ratios were obtained from the relationship between the membrane potential and the conc...

متن کامل

Simple shifts in the voltage dependence of sodium channel gating caused by divalent cations

The effect of elevated divalent cation concentration on the kinetics of sodium ionic and gating currents was studied in voltage-clamped frog skeletal muscle fibers. Raising the Ca concentration from 2 to 40 mM resulted in nearly identical 30-mV shifts in the time courses of activation, inactivation, tail current decay, and ON and OFF gating currents, and in the steady state levels of inactivati...

متن کامل

The roles of calcium in excitation-contraction coupling in various muscles of the frog, mouse, and barnacle.

SYNOPSIS. In rectus abdominis muscles of the frog the active shortening provoked by 15-40 mM K was supported by Ca, Sr, and Ba, but not by Ni, Co, Mn, Cd, or Zn ions. Addition of the latter cations to a solution containing Ca decreased the responses in a manner suggesting competitive inhibition. The shortening of the rectus muscle found in divalent cation-free, low K solutions is abolished by N...

متن کامل

Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle.

Extensive studies performed in nonexcitable cells and expression systems have shown that type 1 transient receptor potential canonical (TRPC1) channels operate mainly in plasma membranes and open through phospholipase C-dependent processes, membrane stretch, or depletion of Ca(2+) stores. In skeletal muscle, it is proposed that TRPC1 channels are involved in plasmalemmal Ca(2+) influx and stimu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 96 7  شماره 

صفحات  -

تاریخ انتشار 2009